La natura fisica all'ipocentro del terremoto profondissimo dell'Argentina settentrionale (14 agosto 1950)

D. DI FILIPPO - L. MARCELLI

È noto che non tutte le caratteristiche fisiche del mantello terrestre sono state finora ben chiarite. Provata ormai l'esistenza dell'astenosfera, resta da precisare lo stato della materia intorno ai 1000 km di profondità e da interpretare alcune anomalie che si riscontrano nella parte inferiore del mantello. La stessa profondità del nucleo terrestre è ancora oggetto di qualche incertezza.

Allo scopo di contribuire al chiarimento di queste ed altre difficoltà, abbiamo ritenuto utile studiare — il più dettagliatamente possibile — un forte terremoto di origine profonda. Ciò ei consentirà anche di procedere a nuove determinazioni dei tempi di tragitto relativi alle onde, di qualsiasi tipo, riflesse dal nucleo.

A questo scopo abbiamo scelto il terremoto del Sud America del 14 agosto 1950, che ha fornito dovunque ottime registrazioni.

Determinazione delle coordinate ipocentrali.

Primo compito nostro è stata la determinazione delle coordinate ipocentrali e del tempo origine.

L'U.S.C.G.S. aveva fornito i seguenti dati:

$$\varphi = 27^{\circ} \text{ S}$$

 $\lambda = 62^{\circ}\frac{1}{2} W$
 $h = 700 \text{ km ca.}$
 $H = 22^{h} 51^{m} 28^{s} \text{ G.C.T}$

La magnitudo assegnata da Pasadena è di

$$7\frac{1}{4} - 7\frac{1}{2}$$

La zona colpita da questo terremoto, nell'Argentina settentrionale, fa parte di una fascia longitudinale lungo la quale, nel tempo, si sono verificati parecchi terremoti di elevata magnitudo e di profondità ipocentrale molto grande.

Dati appunto la forte intensità del sisma e la grande profondità del fuoco, le stazioni sismiche hanno registrato per lo più degli ottimi inizi, sicchè il materiale di cui abbiamo potuto servirci per i nostri calcoli è abbondante e di prima qualità. Alcuni scarti si sono resi necessari o per incertezze sulle correzioni del tempo, o per registrazioni a scorrimento troppo breve o, infine perchè alcune stazioni, troppo vicine tra loro, costituiscono inutili ripetizioni.

Abbiamo utilizzato tuttavia, per i calcoli finali, i dati di 23 stazioni, scelte tra quelle meglio distribuite rispetto all'epicentro.

Poichè gli elementi forniti dall'U.S.C.G.S. si sono dimostrati altre volte ottimi punti di partenza, abbiamo ritenuto senza altro lecito adottarli come valori iniziali.

Ci siamo valsi del noto metodo — più volte applicato — di Caloi-Peronaci (¹) con il quale, facendo uso di coordinate geocentriche, si risolve il problema di determinare le correzioni da apportare ai valori iniziali dell'ipocentro e del tempo origine, mediante un sistema di equazioni di condizione.

La generica equazione di condizione (riferita ad una qualsiasi stazione) è la seguente:

$$\delta t_o - \cos \varphi'_o \sin \alpha \frac{\partial f}{\partial \Delta_n} \delta \lambda_o -$$

$$- \cos \alpha \frac{\partial f}{\partial \Delta_n} \delta \varphi'_o + \frac{\partial f}{\partial h_o} \delta h_o = [1]$$

$$= Tn - [t_o + f (\lambda_o \varphi'_o, h_o)].$$

Per comodità ripetiamo qui il significato dei simboli che compaiono nella [1]. Se t_o ,

 $\lambda_o, \varphi'_o, h_o$ sono i valori assunti inizialmente per il tempo origine, le coordinate epicentrali (geocentriche) e la profondità del fuoco, avremo ovviamente che $\delta t_o, \delta \lambda_o, \delta \varphi'_o, \delta h_o$ sono le correzioni relative. Inoltre

$$\sin \alpha = \frac{\cos \omega' \sin (\lambda - \lambda_o)}{\sin \Delta}$$

- $[\alpha]$ = azimut dell'epicentro rispetto a ciascuna stazione
- $\varphi e \lambda = \text{coordinate geocentriche di ciascuna}$ stazione
- △ _____ distanza geocentrica di ogni stazione rispetto all'epicentro scelto].
- $f(\lambda_o, \varphi_o, h_o)$ è il tempo di propagazione delle *P* corrispondente alla Δ_n della stazione considerata
- $\frac{2f}{\partial \Delta_n}$ è per *h* costante l'incremento tivo ad ogni tempo di tragitto relativo ad ogni stazione quando Δ_n aumenta di 1 grado
- $\frac{\partial f}{\partial h_o}$ è per Δ costante l'incremento che subisce ogni tempo di tragitto quando h viene incrementata di una quantità pari all'unità della dromocrona prescelta
- T_n è il tempo di arrivo delle *P* registrato nelle varie stazioni.

Prima di giungere alla impostazione definitiva della [1] abbiamo tentato una prima approssimazione servendoci della dromocrona di Jeffreys relativa ad h = 0,11 R. Da tali calcoli è però risultata eccessiva la profondità relativa alla dromocrona prescelta, mentre sono risultate piuttosto piccole le correzioni da apportare alle coordinate epicentrali. Tenendo conto di queste valutazioni i valori di $\varphi'_o e \lambda_o$ (geocentrici) sono risultati i seguenti:

$$\varphi'_{o} = -26^{\circ} 52' 16'', 64$$

 $\lambda_{o} = -62^{\circ} 43' 11'', 28$. [2]

Da questi dunque siamo partiti per il calcolo delle Δ_n relative alle stazioni di cui ci siamo definitivamente serviti. Per l' h_o , attesa la precedente osservazione, ci siamo serviti della dromocrona relativa ad h = 0,10 R, assumendo quindi come profondità ipocentrale il valore di

$$h_o = 666.8 \,\mathrm{km}$$
 . [3]

Il tempo origine del terremoto, in base a questa profondità ipocentrale, e calcolato per le 23 stazioni usate per i calcoli finali, è

$$t_o = 22^{h} 51^{m} 31^{s}, 773$$
 . [4]

Nella tabella I riportiamo i dati necessari per giungere al sistema [1].

Risolto questo con il solito metodo dei minimi quadrati, e calcolati successivamente gli errori probabili per ciascuna delle incognite abbiamo ottenuto

$$\delta arphi'_o = + 0^{\circ}, 16766 \pm 0^{\circ}, 070095 = = (+ 10' 3'', 6 \pm 4' 12'', 34)$$

 $\delta \lambda_o = + 0^{\circ}, 03099 \pm 0^{\circ}, 099236 = = (+ 1' 51'', 6 \pm 5' 57'', 25)$
 $\delta h_o = - 0, 06932 \pm 0, 25213 = = (- \text{ km } 4, 39350 \pm 15, 98)$
 $\delta t_o = + 0^{\circ}, 387 \pm 1, ^{\circ}162365$

con $[ll \cdot 4] = 15,38856$ e [vv] = 15,38856 com'è richiesto dalla teoria degli errori.

Tenendo conto dei valori di partenza (2), (3) e (4) i valori definitivi sono i seguenti:

(in coordinate geocentriche)

- $\begin{array}{l} \varphi'_{\,o} = \begin{array}{c} 26^{\circ} \ 52' \ 16'', 64 \ + \\ & + \begin{array}{c} \delta \varphi'_{\,o} = \begin{array}{c} 26^{\circ} \ 42' \ 13'', 04 \ \pm \end{array} 4' \ 12'', 34 \\ \lambda_{o} \end{array} = \begin{array}{c} 62^{\circ} \ 43' \ 11'', 28 \ + \end{array}$
 - $+ \delta \lambda_o = -62^{\circ} 41' 19'', 68 \pm 5' 57'', 25$
- $\begin{array}{rcl} H &=& 22^{\rm h} 51^{\rm m} 31^{\rm s},773 &+\\ &+& \delta t_o \,=& 22^{\rm h} 51^{\rm m} 32^{\rm s},16 \,\pm\, 1^{\rm s},16 \end{array}$

La latitudine geografica φ_o è

$$\varphi_o = -26^\circ 51' 32'',43$$
.

Natura fisica della scossa all'ipocentro.

È noto che si può dedurre la natura di una scossa sismica all'ipocentro dall'esame degli impulsi iniziali registrati nelle varie stazioni sismiche.

Allo scopo di studiare il meccanismo che ha provocato il terremoto in questione, ci

STAZIONI	Д geocentr. provv.soria	α	T_n	Termini noti	Coeffic. di 8%	Coeffic. di δφο'	Coeffic. di δh_0	Errori v
1. S. Lucia	9º 22'00"	22 to 54'57"	22h53m47s,8	+ 1,93	- 5,81144	- 6,49584	-1,62	-0,19182
2. Hualeayo	19 02 36	319 04 32,8	55 15,3	- 0,66	- 5,25896	+ 6,79878	- 1,31	+ 0,16059
3. Bogotà	33 19 11,25	339 04 57,8	57 18,7	- 0,72	- 2,63375	+ 7,72501	- 2,73	+ 0,08238
4. S. Juan	45 16 03	355 27 39,3	58 52,3	- 2,41	0,53503	+7,54623	- 3,53	+ 1,79277
5. Miami	55 17.49	3.10 41 04,3	23 0) 08	+ 0,81	-2,00638	+ 6,41723	-4,00	-1,15977
6. Cleveland	70 21 42	345 05 40,7	01 42,5	-0,17	-1,32161	+ 5,53618	- 4,60	- 0,01671
7 . Harward	6) 39 56	353 02 14,5	01 39,1	+ 0,50	- 0,63010	+ 5,78703	- 4,60	- 0,74516
8. Halifax	71 19 02	359 20 12,0	01 48,1	-0,08	- 0,05888	+ 5,69960	- 4,60	-0,16821
9. Ottawa	73 02 28	350 27 51,7	01 59,8	+ 1,80	- 0,82753	+ 5,52261	- 4,70	- 1,98778
10. Angra do Heroismo .	73 17 17	28 19 50,8	02 00	+ 0,62	+ 2,35793	+ 4,90233	- 4,73	- 0,80051
11. Tucson	74 39 11	319 08 30,0	02 07	+ 0,04	3,20954	+ 4,15979	- 4,80	+ 0,08146
12. Pasadena	80 23 17	316 08 37,1	02 36,75	- 0,70	- 3,15200	+ 3,67751	- 5,00	+ 0,91440
13. Lisbona	82 22 00	39 25 16,4	02 47,95	+ 0,48	+ 2,79828	+ 3,81615	-5,10	- 0,46 31
14. Tanantasset	82 27 52	59 50 12,9	02 48	+ 0,05	+ 3,81766	+ 2,48723	-5,10	+ 0,15490
15. Berkeley	85 19 23	316 48 05,7	03 01,6	- 0,29	-2,86990	+ 3,42625	-5,20	+ 0,55165
16. Paris	95 16 35	37 03 49,6	03 46,9	- 0,91	+ 2,41930	+ 3,53082	- 5,20	+ 0,98014
17. Kew	95 24 19	33 50 22,5	03 47,0	- 1,39	+ 2,23534	+ 3,73770	- 5,20	+ 1,44122
18. Basel	97 23 48	40 02 13,0	03 57,1	-0,26	+ 2,53220	+ 3,44533	-5,20	+ 0,31549
19. Roira	97 31 35	46 43 42,0	03 59	+ 1,06	+ 2,92271	+ 3,08457	-5,20	- 0,92(158
20. Stocarda	98 57 33	39 32 38,2	01 04,2	- 0,19	+ 2,55566	+ 3,47013	- 5,20	+ 0,27615
21. Jersey	93 05 54	34 56 00,0	03 38	+ 0,08	+ 2,34453	+ 3,76297	- 5,20	-0,03610
22. Chur	93 10 15	41 20 00,0	01 00,9	+ 0,06	+ 2,65103	+ 3, 37896	-5,20	+ 0.03818
23. De Bilt	93 33 19	35 18 10,4	01 02,96	+ 0,39	+ 2,31975	+ 3,67250	-5,20	- 0,3304.7

LA NATURA FISICA ALL' IPOCENTRO DEL TERREMOTO, ECC.

Tabella 1

223

siamo valsi, oltre che delle stazioni già impegnate per la determinazione dell'ipocentro e del tempo origine, anche di un discreto numero di altri osservatori, (nei quali ovviamente il primo impulso era chiaramente individuabile) tanto da poter utilizzare complessivamente 52 stazioni. Nella tabella II ne è riportato l'elenco; esse sono affiancate dal segno di compressione (+) o dilatazione (-), dalle distanze epicentrali geografiche Δ e dagli azimut a riferiti all'arco di meridiano Epicentro-Polo Nord.

Trattandosi di un terremoto di elevata intensità, di larga estensione e di grande profondità, abbiamo applicato il metodo di Byerly (²) esteso ai terremoti profondi da uno di noi (³). Esponiamo i risultati richiamando sommariamente la teoria.

Si consideri una sezione meridiana della Terra passante per l'epicentro E e l'analoga sezione della sfera passante per l'ipocentro I(fig. 1). Sia S una stazione generica a distanza epicentrale Δ_n e IS il relativo raggio sismico. Se la sfera interna fosse omogenea (secondo l'ipotesi di Byerly) tale raggio sismico diventerebbe IS_1 (essendo S_1 la sua intersezione con la sfera ipocentrale) e Δ_1 sarebbe l'analogo di Δ_n su detta sfera interna. È evidente che ad ogni S corrisponde un S_1 , eccezion fatta per tutti quei punti situati nella prossimità dell'epicentro entro una zona delimitata da quei raggi che, partendo dall'ipocentro, risultano normali al raggio della terra passante per I.

Si ricorda che se con i si indica l'angolo che il raggio sismico passante per un punto qualsiasi (distante r da 0) forma con il raggio della terra per lo stesso punto, con V la velocità del movimento sismico, vale la proprietà fondamentale (per l'ipocentro e il punto in superficie)

$$\frac{r_h \sin i_h}{V_h} = \frac{r_o \sin i_o}{V_o} .$$
 [5]

Ponendo la velocità apparente $v_n = \frac{d\Delta_n}{at}$ e tenendo conto della relazione di Bendorf $\left(\sin i_o = \frac{V_o}{v_n}\right)$ dalla precedente formula si ha che

$$\sin i_h = \frac{r_o V_h}{r_h \frac{d\Delta_n}{dt}} .$$
 [6]

Nella [6] gli elementi del II membro' sono conosciuti ($r_o = 6371$ km, $r_h = r_o - h =$ = 5708,6 km, $V_h = 10,35$ (*), $\frac{d\Delta_n}{dt} = v_n$

è rilevata, stazione per stazione, dalle tabelle di Jeffrey's opportunamente interpolate): risulta in tal modo determinato i_h , e

pertanto anche l'angolo IOS_1 doppio del complementare di i_h . La misura in gradi di questo angolo dà la corrispondente in gradi all'arco \widehat{IS}_1 e cioè Δ_1 .

I risultati di questa operazione sono elencati nella IV colonna della tabella II salvo i primi quattro e gli ultimi quattro che ne sono esclusi per le seguenti considerazioni:

I) per le prime 4 stazioni in quanto le loro distanze epicentrali sono minori di $\Delta_n = 13^\circ$,

^(*) Il valore di V_h è stato interpolato (per h = 662,4 km) da una serie di valori dedotti da Gutenberg per la velocità delle onde longitudinali a varie profondità.

LA NATURA FISICA ALL'IPOCENTRO DEL TERREMOTO, ECC.

Tabella 2

STAZIONI	Comp. o dilat	⊿º	a	\varDelta_1	tg $\frac{1}{2} \Delta_1$
1. Antofagasta		07041'30"	2920 51/14"	, 400	0.36397
2. Buenos Avres	+	08 31 00	155 53 22	34	0.30573
3. La Plata	+	09 00 00	154 10 07) 30	0,26795 (
4. Santa Lucia	-	09 30 18	224 29 06	26	0,23087)
5. Huancayo	+	18 56 21	318 41 38	37 49'12"	0,34257
6. Bogotà	-	33 10 30	338 56 28	60 43 26	0,58580
7. Balboa Heigts	+	39 11 18	333 01 00	67 27 30	0,66766
8. Guadalaiara	+	54 46 35	311 42 21	88 20 00	0,97133
9. Vera Cruz	+	56 07 06	321 08 26	90 01 48	1,00052
10. Tacubaia	+	58 02 13	318 33 05	93 21 02	1,06028
11. Manzanillo	+	60 56 46	314 01 30	94 58 40	1,09088
12. Cincinnati \ldots	+	68 45 00	341 07 40	104 20 00	1,28764
13. Chinuanua	+	69 07 41 co 20 10	319 43 55	104 20 00	1,28764
14. Harward	+	09 30 19	353 00 29	104 20 00	1,28704
16 Halifor	+	70 12 13	345 03 10	105 50 10	1,02011
10. Π maintax	1	71 09 11	309 21 29	107 19 10	1,00988
$17. \text{ Cincago (USCGS)} \dots \dots \\ 18. \text{ Ottows}$	1 I I	72 53 00	350 96 04	107 19 10	1 35088
10 Angra do Heroismo	T	73 07 44	98 20 05	108 47 30	1 30657
20 Tueson	II	74 32 51 4	319 05 44	110 15 10	1 43488
21 Monte Wilson	+	80 16 15	316 13 56	115 57 46	1 59918
22 Pasadena	+	80 16 41	316 06 17	115 57 46	1 59918
23. Santa Barbara	+	81 26 39	315 29 14	115 57 46	1.59918
24. Haiwee	+	81 29 08	317 43 10	115 57 46	1,59918
25. Lisbona	-	82 13 10	39 25 16	117 21 46	1,64244
26. Tinemaha	+	82 18 08	318 16 43	117 21 46	1,64244
27. Tamanrasset		82 21 21	59 55 21	117 21 46	1,64244
28. Malaga	+	83 41 43	43 24 06	117 21 46	1,64244
29. Berkeley	+	85 13 23	316 46 57	121 30 10	1,78573
30. Algeri Univ	-	88 27 25	47 16 09	$122 \ 51 \ 50$	1,83657
31. Seattle	+	91 28 29	324 18 08	122 51 50	1,83657
32. Jersey	-	92 56 44	34 55 02	122 51 50	1,83657
33. Christchurch	+	93 31 23	216 48 28,5	122 51 50	1,83657
$34. Wellington \ldots \ldots \ldots$	+	93 49 44	217 21 26	122 51 50	1,83657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+	95 07 33	37 02 47	124 12 52	1,88925
30. Kew	-	95 15 00	33 49 00	124 12 52	1,88920
37. Auckland	+	90 41 50		124 12 52	1,88920
20 Roma		07 99 10	40 01 14	194 19 59	1 88925
40 Coira		98 01 35	41 18 25	124 12 52	1 88925
41. De Bilt		98 24 10	34 40 50	124 12 52	1.88925
42. Stoccarda		98 48 43	39 31 03	124 12 52	1,88925
43. Gottinga		100 38 46	37 20 00	125 33 32	1.94408
44. Jena		101 13 49	38 23 37	125 33 32	1,94408
45. Praha	_	102 26 02	40 02 10	125 33 32	1,94408
46. Athene	-	103 21 36	54 10 25	125 33 32	1,94408
47. Belgrado	-	103 52 23	46 42 21	125 33 32	1,94408
48. Copenhagen		103 55 28	34 20 02,5	125 33 32	1,94408
49. Varszawa	-	107 06 34	39 45 22		101417 <u></u>
50. Nuova Delhi	+	144 33 28	77 42 00	nes interforme	ung d er ternis
51. Batavia	+	145 37 02	161 21 43	and the state	-
52. Calcutta	+	153 20 53	86 53 30		in the second second
	1		Land De day		

(*) I primi quattro valori sono calcolati in base alle ⊿ relative ai raggi opposti (per quanto detto nel testo).

225

e cioè della distanza limite precedentemente accennata ($i_h = 90^\circ$; h = 662.4 km);

II) per le ultime 4 in quanto le loro distanze epicentrali superano il limite di ricezione delle P.

stazione (v. colonna 3 della tab. 2) e come raggio vettore la tg $\frac{1}{2}\Delta_1$ i cui valori sono stati riportati nell'ultima colonna in base alla relazione $\Delta_1 = 2$ (90° - i_h).

Da un primo esame della figura appare chiaramente che le compressioni e le dila-

Le posizioni delle 44 stazioni residue sulla sfera ipocentrale vengono ora proiettate con proiezione stereografica assumendo come polo di proiezione l'anti-ipocentro P e come piano di proiezione il piano equatoriale relativo ad IP, sì che la proiezione di I viene ad essere il centro di figura (v. fig. 2). I punti proiettati (contrassegnati con il numero che individua nell'elenco le singole stazioni e con il relativo impulso iniziale) hanno per coordinate polari l'azimut corrispondente alla tazioni si raggruppano in modo da poter essere facilmente separabili in 4 zone sì che in zone opposte i segni sono uguali. Unica eccezione risulta Parigi (n 35, compressione) tanto più inspiegabile in quanto si trova in mezzo ad un folto gruppo di ottime stazioni in cui il primo impulso presenta in modo inequivocabile una dilatazione.

Si notano in figura le posizioni 1', 2', 3', 4'. Esse rappresentano le stazioni 1, 2, 3, 4 considerate come se fossero state trasferite su l-

la sfera ipocentrale, considerando il raggio opposto il quale, com'è noto, ha il primo impulso della stessa natura. (Questo allo scopo di non perderne le preziose indicazioni degli impulsi iniziali, dato inoltre il fatto che l'errore che si commette con questo artificio è trascurabile nella nostra rappresentazione grafica).

Pertanto i Δ_1 sono, per queste quattro stazioni, i Δ_1^* corrispondenti alla distanza epicentrale del punto di emergenza del raggio opposto.

Il primo cerchio di separazione si è potuto facilmente tracciare in quanto risulta nettamente individuato poichè deve passare per I' e contenere inoltre la dilatazione di Antofagasta (n. 1') e la compressione di S. Barbara (n. 23). Il centro di questo cerchio si trova sulla direzione N 29° 35' E ad una distanza da I' di 3,25 r (r = raggio di figura).

Quanto al II cerchio, normale al primo per I', poichè la stazione più orientale della zona a N-W che presenta una compressione (n. 16 Halifax) è separata dalla più vicina dilatazione (n. 19 Angra do Heroismo) dal-

Fig. 4

l'intero Oceano Atlantico, l'abbiamo tracciato in maniera da poter essere equidistante dalle 2 stazioni nominate e precisamente

il suo centro si trova sulla direzione N $60^{\circ} 25'$ W ad una distanza dal centro di figura di 2,30 r.

Da quanto esposto risulta chiaramente che il processo del moto sismico all'ipocentro è stato provocato da una frattura.

Una osservazione molto interessante è la seguente. Il piano rappresentato dal primo cerchio risulta orientato all'incirca come la grande faglia di S. Andrea (California, Messico...) Nella fig. 3 riportiamo una cartina delle zone disegnate in proiezione Mercatori: sono ivi visibili la traccia in superficie del nostro piano orientato N 60° 25' W e la traccia di detta fagha. Questa coincidenza ci permette di giustificare in qualche modo la scelta di detto piano come piano di frattura, anche se i due fatti non hanno alcuna relazione tra loro.

Inclinazione dei piani e determinazione del polo.

Allo scopo di poter determinare anche l'inclinazione dei piani, abbiamo seguito il metodo di Byerly (²) trasportato sulla sfera ipocentrale.

Nella fig. 4, $d_{\beta_1} = 6,5 \ r e \ d_{\beta_2} = 4,6 \ r$ sono i diametri dei cerchi trovati (essendo r il raggio del cerchio di figura) e $\beta_1 = 8^{\circ} 15'$ e $\beta_2 = 12^{\circ} 30'$ rappresentano le inclinazioni delle tracce rispetto al raggio terrestre (OI) per l'ipocentro di frattura e ausiliario; $d\gamma = 3,74 \ r$ è la distanza dell'ipocentro (che è uno dei punti d'intersezione dei cerchi) dal II punto d'intersezione e $\gamma = 14^{\circ} 30'$ è l'inclinazione, rispetto allo stesso raggio, della retta d'intersezione dei due piani.

Ricordiamo che si chiama Polo, nella rappresentazione in superficie dei primi impulsi, l'incontro delle linee delimitanti le 4 zone. Nel nostro caso, data la profondità del sisma e l'inclinazione dei piani, la posizione del Polo (che è distinta dall'epicentro) si può

individuare come intersezione K della retta comune dei due piani con la superficie terrestre: chiamiamo anti-polo K' l'altra intersezione.

La fig. 5 è una sezione verticale della sfera terrestre: E ed I sono ovviamente epicentro ed ipocentro del terremoto e la retta K K'è inclinata di γ rispetto al raggio per I. La determinazione della distanza epicentrale del Polo in gradi si effettua con le seguenti considerazioni:

$$KOE = \widehat{\gamma} - OKI$$
$$IOK' = 180^{\circ} - \widehat{\gamma} - OK'I$$

Ma per il teorema dei seni (applicato al triangolo OKI) si ha

\sin	OKI		$\sin(180-\gamma)$		
r_o	-h	15.24	r_o		

E poichè
$$r_o = 6371$$
 km, $h = 662,4$ km risulta
E'H = 1° 32'.1

$$EK' = 152^{\circ} 32', 1$$

L'arco KK' è orientato N 25° W nel tratto EK'.

Rappresentazione in superficie della natura dei primi impulsi.

Allo scopo di poter delimitare in superficie le zone interessate da compressioni e

Fig. 7

dilatazioni è necessario trovare la posizione dei punti d'intersezione dei raggi sismici (uscenti dall'ipocentro e tangenti ai due piani) con la superficie terrestre.

Per ottenere ciò occorre determinare, per i vari azimut, le distanze epicentrali di emer-

	rabena J.	$p_1 = 0.10$
ψ_1	i	∆ d r
$\begin{array}{c} \psi_1 \\ \hline \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 46^{\circ}59' \\ 50 \\ 60 \\ 70 \\ 73^{\circ}37'5 \\ 80 \\ 90 \\ 100 \\ \end{array}$	$\begin{array}{c} i\\ \hline \\ 8^{\circ}13'18''\\ 82230\\ 84634\\ 93016\\ 104304\\ 12\\ 124239\\ 161015\\ 225820\\ 271323\\ 395138\\ 90\\ 395138\\ \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
110 120 130 140 150 160 170 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Tabella	3.	$\beta_1 =$	80	15'
---------	----	-------------	----	-----

genza dei suddetti raggi sismici. Se β è l'angolo d'inclinazione del piano considerato, ψ è l'azimut ed *i* l'angolo che il raggio sismico forma con il raggio terrestre per l'ipocentro, con facili considerazioni di trigonometria si ha che

$$\operatorname{tg} i = \frac{\operatorname{tg} \beta}{\cos \psi}$$
 [7]

Poichè tra i raggi sismici ce ne sono alcuni che passano attraverso il nucleo in dipendenza dell'inclinazione del piano e della profondità ipocentrale è necessario conoscere l'angolo limite per differenziare le zone d'emergenza delle P da quelle d'emergenza delle PKP.

Applicando la [1] all'ipocentro e al punto più basso della traiettoria (che indicheremo con l'indice c) e considerando che l'angolo i_c è uguale a 90° si ha

$$\sin i_h = \frac{r_c}{V_c} \quad \frac{V_h}{r_h} \quad . \qquad [5']$$

Prendendo $r_c = 3451$ km (Caloi-Peronaci (4)), $V_c = 3,7$ km/sec (Gutenberg (⁵)) $V_h = 10,35$ km/sec, $r_h = 5708,6$ km il valore limite di i_h risulta il seguente

$$i_h = 27^\circ 10', 47$$

Tabella 4. $\beta_2 = 12^{\circ} 30'$

				_
ψ_2	i	Δ	d	r
$\begin{array}{c} \psi_2 \\ 0^{\circ} \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 64^{\circ}28'15'' \\ 70 \\ 80 \\ 90 \\ 100 \\ 110 \\ 120 \\ 130 \\ \end{array}$	$\begin{array}{c} i\\ \hline 12^{c} &\\ 12 & 30 & 00\\ 12 & 41 & 12\\ 13 & 16 & 28\\ 14 & 21 & 29\\ 16 & 08 & 25\\ 19 & 01 & 43\\ 23 & 54 & 41\\ 27 & 13 & 23\\ 32 & 17 & 02\\ 51 & 55 & 43\\ 90 &\\ 51 & 55 & 43\\ 32 & 17 & 02\\ 23 & 54 & 41\\ 19 & 01 & 43\\ \end{array}$	∠ 110° 101,5, 80,0 46,5 12,9 4,7 2,3 1,7 1,3	d	r - 1,184
140 150 160 170 180	16 08 25 14 21 29 13 16 28 12 41 12 12 30 00	1,25 1,2 1,2 1,15 1,1	+ 1,628 - + 1,628 - + 1,628 - + 1,628 - + 1,628 - + 1,628 -	- 0,040 - 0,038 - 0,038 - 0,037 - 0,035

Se ora poniamo per il piano di frattura $\beta_1 = 8^{\circ} 15'$ e l'origine $\psi_1 = 0$ nella direzione N 29° 35' E applicando la [3] si ottiene la serie di valori riportati nella II colonna della tabella 3. Se invece poniamo $\psi_2 = 0$ nella direzione N 60° 25' W e consideriamo il piano ausiliario di inclinazione $\beta_2 = 12^{\circ} 30'$ con la stessa formula si ha la serie dei valori riportati nella II colonna della tabella 4.

Di queste due serie di valori ci serviamo per calcolare, tramite la [2], le velocità apparenti in superficie $\frac{d\Delta_n}{dt}$ dei raggi considerati: e indi i Δ_n corrispondenti. L'operazione è stata effettuata valendosi del grafico della fig. 6 ottenuto dalle tavole di Jeffrey's per una profondità ipocentrale corrispondente a quella del terremoto in questione. I risultati relativi sono riportati nelle III colonne delle due tabelle 3 e 4.

Abbiamo ora tutti gli elementi sufficienti per poter passare alla determinazione grafica dei punti ottenuti: abbiamo scelto la proie-

zione stereografica della superficie terrestre avente come centro di figura il polo Nord (vedi fig. 7). Ricordando le coordinate geografiche dell'epicentro e tenendo conto che in questa proiezione il λ si conserva, si ha che la distanza epicentrale ξ del polo Nord risulta

$$\begin{aligned} \xi &= 90^{\circ} + \varphi = 116^{\circ} 51' 32'', 43\\ \lambda &= - 62^{\circ} 41' 19'', 68 . \end{aligned}$$

Determinata la proiezione E dell'epicentro e condotti per essa i cerchi massimi, ad intervalli di 10° ciascuno, in modo che uno di questi coincida con $\psi_1 = N-29^\circ 35'$ -E, per ottenere i punti rappresentativi dei punti di emergenza nelle direzioni corrispondenti, abbiamo applicato le formule della proiezione stereografica

 $d = \frac{\sin \xi}{\cos \xi + \cos \varDelta} \quad = \frac{\sin \varDelta}{\cos \xi + \cos \varDelta}$

che ci danno gli elementi delle proiezioni dei cerchi di distanza epicentrale Δ . Le intersezioni di questi con i corrispondenti ψ danno la rappresentazione grafica dei punti cercati. I relativi valori sono elencati nelle ultime due colonne delle tabelle 3 e 4.

Nella tabella 3, essendo l'angolo β_1 minore dell'angolo limite, vi è una parte che interessa le onde PKP le cui velocità apparenti sono state rilevate dalle tavole di Jeffrey's tenendo conto della profondità (fig. 8). I due tratti di curva sono stati raccordati nei punti limite calcolati per una $\Delta = 110^{\circ}$ per le *PKP* (cerchi P'_1) e di $\varDelta = 101^{\circ}, 5$ per le P (cerchi 1P): gli azimut risultano, per la formula [3], 46° 59' 12" e 73° 37' 30" rispettivamente per il primo piano, e per il secondo 64º 28' 15" per le sole P, mentre per le PKP essendo l'angolo d'inclinazione idel raggio sismico all'ipocentro per $\Delta = 110^{\circ}$ di 12°, inferiore perciò a tutte le i calcolate per gli azimut $\psi_2 = \pm 60^{\circ}$ ne risulta che questi raggi escono in superficie nella zona d'ombra e per tanto non è possibile chiudere la curva con i raggi delle PKP. (I cerchi azimutali limiti delle P sono indicati con ${}^{2}P$). Nella fig. 7 i punti ottenuti sono stati raccordati, con tratteggio: le parti relative alla zona di ombra risultano individuate da un tratteggio più minuto. Ne risultano due curve che riportate sul planisfero della fig. 9 danno la possibilità di mettere in evidenza, mediante le coordinate geografiche, la corrispondenza dei primi impulsi con le 4 zone. A conferma della bontà dei risultati conseguiti vediamo che anche le stazioni di Varsavia, Nuova Delhi, Batavia, Calcutta, escluse dai calcoli a causa della eccessiva distanza epicentrale, trovano in tale suddivisione il posto adeguato ai segni dei rispettivi primi impulsi.

Roma - Istituto Nazionale di Geofisica. Giugno 1957.

RIASSUNTO

Allo scopo di poter studiare alcune caratteristiche fisiche del mantello terrestre, è stato preso in esame un forte terremoto di origine profonda, con l'intento di studiarlo dettagliatamente in tutti i suoi aspetti.

Riportiamo in questa sede intanto i risultati conseguiti dalla ricerca della natura fisica della scossa all'ipocentro.

Il terremoto in questione è quello del Sud America del 14 agosto 1950, di magnitudo 7¹/₄, e che ha fornito dovunque ottime registrazioni.

La zona colpita da questo forte sisma, nell'Argentina settentrionale, fa parte di una fascia longitudinale lungo la quale, nel tempo, si sono verificati parecchi terremoti di elevata magnitudo e di profondità ipocentrale molto grande.

Primo nostro compito è stato quello di determinare le coordinate ipocentrali ed il tempo origine del terremoto in questione. Il materiale a nostra disposizione era per lo più di ottima qualità e abbondante; le registrazioni hanno avuto inizio, per la maggior parte, con degli impeti, sicchè i risultati conseguiti sono indubbiamente degni di fiducia.

Il calcolo, effettuato con 23 stazioni, adottando un metodo che ha già dato in precedenza buoni risultati, ha portato alle seguenti determinazioni:

$$\begin{split} \Phi'_{0} &= -26^{\circ} \, 42' \, 13''. \, 04 \pm 4' \, 12''. \, 34 \end{pmatrix} \stackrel{\text{(coordinate geo}}{\underset{\text{nate geo}}{\text{(nate geo})}} \\ \lambda_{0} &= -62^{\circ} \, 41' \, 19''. \, 68 \pm 5' \, 57''. 25 \stackrel{\text{(coordinate geo})}{\underset{\text{(nate geo})}{\text{(mate geo})}} \\ H &= 22^{\text{h}} \, 51^{\text{m}} \, 32^{\text{s}} \, . \, 16 \pm 1^{\text{s}} \, . \, 16 \\ h_{0} &= \text{km} \, (662.4 \pm 16) \end{split}$$

Precisati questi risultati siamo passati a studiare il meccanismo che ha provocato il terremoto in questione.

E' noto a tutti che la natura di una scossa sismica all'ipocentro si può dedurre dall'esame degli impulsi iniziali registrati nelle varie stazioni sismiche.

Per il nostro scopo ci siamo valsi, oltre che delle stazioni già impegnate per la determinazione dell'ipocentro e del tempo origine, anche di parecchi altri Osservatori tanto da raggiungere complessivamente il numero di 52 stazioni.

Per ciascuna di esse sono state inizialmente rilevate le compressioni e le dilatazioni degli impulsi iniziali, poi sono state calcolate le distanze epicentrali geografiche e gli azimut riferiti all'arco di meridiano Epic-Polo Nord.

Trattandosi di un terremoto di elevata intensità, di larga estensione e di grande profondità, abbiamo applicato il metodo di Byerly esteso (da uno di noi) ai terremoti profondi.

Nella figura 2 sono riportati i risultati conseguiti.

Appare chiaramente che compressioni e dilatazioni si distribuiscono in 4 zone, in modo che in zone opposte i segni sono uguali. (Unica eccezione, inesplicabile, Parigi (n. 35), che si presenta con una compressione in mezzo ad un folto gruppo di ottime dilatazioni.)

Risulta chiaramente che il processo del moto sismico all'ipocentro è stato provocato da una frattura.

Una osservazione molto interessante e la seguente: il piano orientato $N-60^{\circ}$ 25'-W risulta quasi parallelo alla faglia di S. Andrea, il che ci porta a supporre che sia proprio questo il piano di frattura.

Sono state calcolate le inclinazioni dei due piani rispetto al raggio terrestre per l'ipocentro: esse sono rispettivamente 8° 15' e 12° 31' (vedi figura 4), mentre la retta intersezione dei due piani forma con lo stesso raggio una inclinazione di 14° 30'.

Successivamente sono state calcolate — per punti — le curve intersezioni della superficie terrestre con i raggi uscenti dall'ipocentro e tangenti al piano di frattura ed al piano ausiliario ortogonale (vedi figura 7).

Le stazioni che, a causa della loro posizione che ne rendeva impossibile la proiezione, non sono state adoperate per la determinazione dei due piani hanno tuttavia i primi impulsi concordi con quelli della zona delimitata dalle suddette curve.

ABSTRACT

In order to study some of the physical features of the earth's crust, a strong earthquake of deep origin has been studied in detail, from every point of view.

Thus, we shall supply on these pages the results which have been achieved by research into the physical nature of the shock at the hypocentre.

The earthquake chosen is the one that took place in South America on August 14 1950 (magnitudo $7\frac{1}{4}$); it supplied excellent registrations everywhere.

The area hit by this strong seism is situated in Northern Argentina and it constitutes a part of a longitudinal strip along which, for some time, high-magnitudo earthquakes with very great hypocentric depth have been taking place.

Our first task was to ascertain the hypocentral coordinates and the time of the origin of the earthquake in question. The material at our disposal was mostly of good quality and abundant. Most of the registrations started with the impetuses and, thus, the results were undoubtedly reliable.

The calculations made with the assistance of 23 stations and using a method that has already given results, have yielded the following data:

$$\begin{split} \Phi_{0} &= -26^{\circ} 42' 13'' \cdot 04 \pm 4' 12'' \cdot 34_{\text{(geo-centric coord})} \\ \lambda_{0} &= -62^{\circ} 41' 19'' \cdot 68 \pm 5' 57'' \cdot 25^{\text{(dinates)}} \\ \text{H} &= 22h 51\text{m} 32^{\text{s}} \cdot 16 \pm 1^{\text{s}} \cdot 16 \\ h_{0} &= klm (662 \cdot 4 \pm 16) \end{split}$$

After having secured these results, we devoted out attention to the study of the mechanism which had provoked the earthquake in question.

It is a well-known fact that the nature of a seismic shock at the hypocentre can be deduced from the study of the initial impulses registered at various seismic stations.

For our purposes, we utilized not only the stations already reserved for the determination of hypocentre and time of origin, but also several other Observatories, thus, reaching an aggregate number of 52 stations.

First of all, for each of them the compressions and dilatations of the initial impulses were calculated. Then, the epicentral geographical distances and azimuths referred to the arc of the Epic-North Pole meridian were worked out.

As it was an earthquake of great intensity, great extension, and great depth, we applied Byerly's method extended (by one of us) to deep-seated earthquakes.

The results secured are indicated in Fig. 2. It appears clearly that compressions and dilatations are distributed over 4 arcas, in such a manner that in opposed areas the signs are the same. The only unexplainable exception in Paris (No. 35) which presents a compression amidst a large group of excellent dilatations.

It transpires very clearly that the process of seismic movement at the hypocentre has been caused by a fracture.

The following, very interesting, observation was made: the plane, oriented $N-60^{\circ} 25^{\circ} - W$, turned out to be almost parallel to the faille of S. Andrea which leads us to supposing that it is precisely the plane of the fracture.

The inclinations of the two planes in respect to the earth's radius passing through the hypocentre were worked out. They are 8° 15' and 12° 31' respectively (see Fig. 4), while the straight line formed by the intersection of the two planes is inclined, in respect to the same radius, to the extent of $14^{\circ}30^{\circ}$.

Subsequently, we calculated the curves of the intersections of the earth's surface with the radii coming out of the hypocentre and tangential to the plane of fracture and to the auxiliary orthogonal plane (see Fig. 7).

The stations which, owing to their position, could not be projected, were not utilized for the determination of the two planes. Nevertheless, the initial impulses which they recorded agreed with those recorded in the area limited by the above-mentioned curves.

BIBLIOGRAFIA

- (1) CALOI, P. PERONACI, F., Il terremoto del Turkestan del 2 novembre 1946, « Annali di Geofisica », I, 2 (1948).
- (2) BYERLY, P., The Earthquake of July 6th, 1934. Amplitude and first motion, "Bull. Seism. Soc. Americ. », 28 (1938).
- (3) DI FILIPPO, D., Sulla rappresentazione in superficie della natura dinamica di una scossa con ipocentro profondo, « Annali di Geofisica », III, 3 (1950).
- (⁴) CALOI, P.-PERONACI, F., Il batisismo del 28 agosto 1946 e la profondità del nucleo terrestre, « Annali di Geofisica », II, 4 (1949).
- (⁵) GUTENBERG, B. Non ancora pubblicato. Comunicato gentilmente dall'Autore.