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SUMMARY. — This paper is concerned with a fundamental marine 
problem, i.e. the internal waves. After a discussion of the physical assump-
tions about some mathematical models describing the vertical structure 
of the sea, we present the various driving forces and the different theoretical 
formalisms to approach the problem. 

RIASSUNTO. — Nello studio dei fenomeni connessi alla dinamica ma-
rina, il problema delle onde interne rivinte un ruolo di primaria importanza. 
In questo lavoro si analizzano inizialmente alcuni modelli che riguardano 
la formazione di determinate strutture verticali del mare, indicando le li-
mitazioni che comportano alcune ipotesi ivi utilizzate. Introdotta poi l'e-
quazione che descrive le onde interne e dopo averne costatata la similarità 
con l'equazione di Scliroèdinger, si passa ad una rassegna dei differenti 
approcci matematici che avviano a soluzione tale problema. 

1 . - INTRODUCTION 

T h e purpose of th is note is to introduce a marine problem, t h a t 
of t h e internal waves. These are related to t h e ver t ica l var ia t ion of 
t h e water density, called " t h e r m o c l i n e " . These waves are described 
b y a Schroedinger- type equat ion ; also the Lagrangian formal ism and 
some techniques of the q u a n t u m field theory h a v e been used in this 
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kind of problems. Because these formalisms have been widely used 
by experts in quantum theory, we feel that an exchange of informations 
could be fruitful and, in this case, also possible. 

To describe the phenomena, we start by remembering that the 
experimental temperature and salinity of the sea water have a vari-
ation — sometimes a sharp one — about 10 -7- 50 meters under the 
sea level. This variation is called "thermocline" and it implies a 2 ° / 0 o 

variation of the sea water density. The main reason of this variation 
is due to the exchange of the heat and of turbulence with the atmo-
sphere. Other reasons are related to the Coriolis force and to the real 
shape of the oceanic basins. We will describe first how deep is our 
knowledge of the effect of these parameters on the depth "d" of the 
thermocline (§ 2). The presence of this variation of the density "Q" 
of the sea water allows the existence of some waves, called "internal 
waves". To have an intuitive picture one can think to the surface 
waves (considered as waves of the discontinuity surface between air 
and water), remembering that the internal waves are larger and slower. 
Their characteristic times can be 10 H- 30 minutes and some am-
plitudes of about 20 -f- 30 meters have been observed. By a theo-
retical point of view, if one linearizes the Euler equation and uses the 
Boussinesq approximation (it will be described in § 4), one arrives 
to a Schroedinger-type equation. These well known results allows 
us a reasonable insight of the problem but suggest us various questions. 

There are many sources of internal waves; so there is the prob-
ability that in every point of the sea one can see at one time more 
than one internal waves. This happens in practice, Garrett and 
Munk(6 '7) gived an empirical formula to know the local density of 
probability of internal waves. A more open question concerns indeed 
the energetic balance of these internal waves. Their dissipation by 
friction being rather small, the reason of their decay is not very clear. 
About their origin we have a rather large number of sources: storms, 
interaction of currents with bottom irregularities, tides, non-linear 
exchanges between surface and internal waves. These are discussed 
in last section. 

2 . T H E THERMOCLINE 

Let us consider now the air-water system. By taking into ac-
count only the Coriolis force, the gravity g and the exchange of heat 
() between air and ocean, we want to study under* what conditions 
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we can arrive to a realistic thermocline. The Euler equations, the 
continuity relation for the mass and the heat give: 

dv „ 1 „ 1 
— + H X v + — Vp — g = — F 

di o o 

dp 
l T + e V - V = 0 [ 1 ] 

1 • 
— = V . (ft V T) + — Q 

M QC 

9=Q(P -T) 

where v is the velocity, p the pressure, Q the density, T the temper-
d 3 

ature, c the specific heat, and —— = — + v . V In the preceeding 
di i>i 

formulae, we assumed that the x axis is directed to the north, the z 
axis is directed upward and the y axis is directed eastward. The Co-
riolis force is described by f = 2 Q sin cp. In the /3-plane approxi-
mation one puts 

/ = / . + P(y— yo) 

The diffusion of turbulence in the horizontal and vertical directions 
is described by the Ku and Kv coefficients. These equations should 
be supplemented by their boundary conditions. We can note however 
that this is a system of non-linear equations of difficult solution. To 
be able to obtain simpler relations, necessary in practice, one usually 
introduces some "approximations" (steady conditions, linearization 
of the velocities etc.) which allow semplified equations 

Q Qx 

1 7>p 
fu = — — 

Q <>?/ 
1 bp [2] 

o = — — — a 1 J 

o 1>z J 

i ) 7 ' 5 T 5 2 ' A V T 
u + V --— + w = K,AhT + Kv -„ 

ILX 5// I)Z bz-

V . v = 0 

One is obliged to remark that these equations are not obtained only 
on physical ground but also because they can have simple solutions 
of elementary type. 
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I t is important to note that the temperature T can describe the 
variations of the density if one assumes that the salinity is rather 
constant with the depth. Such assumption being acceptable, one can 
assume 

Q = e„ [1 — « (T — To)] 

where a is a constant. If one adds this last relation to the [2] equa-
tions, one then arrives to six equations for the unknown quantities: 
q, T, p, u, v, w. The boundary conditions are now of crucial impor-
tance for the various models that will be discussed in the following, 
which have been mainly obtained after 19(50. 

A very interesting model is due to Robinson and Stommel (23) 
where the thermic structure of an ocean has been studied under the 
hypothesis of geostrophic balance of forces and a north-south coast 
at x = 0. 

The surface temperature is given as a boundary condition 

T = T(y) = T„ + l\y at 2 = 0 

T -* 0 at x = 0; z — oo 

The other boundary condition concerns the vertical velocity 

iv = 0 

w -»• w oo (x,y) 

at 2 = 0 

at 

Assuming also that one can forget the horizontal turbulent diffusion 
(Kn - 0) and the advenction in the x direction, one can solve the 
problem with the method of separation of variables: 

T = G(x) m 

w = H(x) x(£) with £ = z.F(x) . 

I t is not obvious naturally that such a position contains all the phys-
ically interesting informations. In any case, after some manipulations, 
one can obtain by transformation of similarity the temperature struc-
ture. 

One has 

J L f 1 - -S&L/j . : 2 1 i l 0 - s \ ± 
T = t)„(y) e \2Kti il(y) \ f> ) . 
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The theoretical behaviour of the temperature T that we have discussed 
before gives a rather good agreement with some experimental data 
(Pig. 1). 

A different approach has been choosen by Welander (29) which 
remarked the important role that the diffusion of the mass can have. 
This model is peculiar because the advection is forgotten and the 
diffusion coefficient is the main physical quantity. 

More in particular, Welander assumes an hydrostatic and geo-
strophic balance of forces. He studies the effect of a variation of the 
density Q' = Q — Q. The density of the surface and bottom is given 
as boundary condition: 

Q = Qo (&,(p) a t z = 0 

Q = const; QV = 0 at 2 — 0 0 

The system of equations [2] is then reduced to the equation (30) 

bcpzz M b&z M — Mzz M ~i>cpz M = ootg & dcp M ~bzzz M 

for the integrated quantity 

M [d, cp,z) = I dz' I dz" e (d, <p, z) 

—CO — 00 

Particular solutions can be obtained by introducing a new variable 

11 = log sin & and then by putting 
M = P (<p, V) Q (rh z) 
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One then obtains the solution and it results (30) 

Kz 
sin& 

M = Mo {<p, 0) e 

Obviously 31 o is fixed by the boundary condition at z = 0; the quan-
tity k is also obtained from the boundary conditions. The density 
also lias the same form 

Kz 
sin# 

Q'O {D, <p) e 

q'o being the variation of the density at 2 = 0. I t has to be remarked 
that the value of k is such that at about 1.000 meters the perturbation 
vanishes. This is in some sense due to the phenomenological data 
and is not the consequence of the equations. More interesting appears 
the "sin <p" behaviour of the depth of penetration between the equator 
and the poles. A more realistic approach at the same problem has 
been introduced by Barcilon by considering the boundary of the 
ocean both at east and west (x = 0 and x = 1). In formulae, his 
boundary conditions are: 

T = 0 

u = 0 at x = 0 , 1 

T = 0 

w = 0 at 2 = 0 

T = &(y) w = 0 at 2 = 1 

where t)(y) is the surface temperature. Obviously the physically in-
teresting quantities have been normalized by scale quantities, in order 
to have simpler adimensional quantities 

0 < x < 1 

0 < y < 1 

0 < T < 1 

Moreover the vertical gradient of the temperature lias been approxi-
mated by VT ~ A.T/D to avoid non-linear terms of this equation. Then 
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tlie use of Fourier transform allows to find the solution. I t has to be 
remarked that this author introduces the perturbation 

T = T — T 

and assumes T 0 for * - > ( ) . I t is in this way assumed that a boun-
dary layer is only in the west coast. The explicit form of the tem-
perature is rather complex: 

T = 
2 d(y) 

I sin (x rj) -
e -M 

d rj 

where % is 

7. = 

(i — zy s p f o L 

T l —x)Kv(L + P io yY 

For the quantity T one has 

~ _ _ 2 fl(y) 1 — e'*! -Zlrf - sin (r]Q) e &7] 

where 

f = (1 — «) 
K v 

fo PL 

x\/ Spfo Kv 

(L + S p f0y)2 

s " Kh (fo + p L y) 

Then one can calculate analytically 

2 d(y) 
T = 

6 it x 
cos ( ì A J L 

\ l 1 / 3 8 

- 1 / « 

6 

Jx_ 
4 1 3 S 

From a graphical representation of the isothermes in the (x, z) plane, 
we can see easily an "asymmetry" between eastern and western 
coasts; in particular a boundary layer exists solely along the Western 
coasts. 

One can now remark in general that the preceeding models have 
some features in common. They want to treat analitically a rather 
complicated problem and it is obvious that some general aspects 
of the physical situation must be lost. In particular one must stress 

that to disregard the advective parts of or implies that some 
Clf Cl6 
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important informations about the interchange of kinetic and poten-
tial energies are lost. More in particular, if one assumes a static bal-
ance of forces as the hydrostatic and the geostrophic force, then one 
obtain essentially solutions of exponential type. All the variations 
are related with the initial or boundary conditions. I t is obvious 
that in this way one can obtain only a rough picture which is also 
more unsatisfactory if one thinks that the realistic thermocline is 
not only a rather complex profile, but also it has many horizontal 
discontinuity surfaces followed by small well mixed layer (the fine-
structure of thermocline) (31). One has then to take into account 
other aspects as the surface input of turbulance and the flow be-
tween kinetic, thermic and potential energies. Turner and Krauss (>-13) 
have stressed the importance of these aspects. They remarked: "most 
of these preceding models and other studies not cited suffer from 
two disavantages. They often contain more than one physical process 
in a way that makes it difficult to disentangle them and they are near-
ly all steady state calculations". 

In (12), a work of main phenomenological and experimental char-
acter, the seasonal variation of thermocline is studied. I t results 
experimentally that in winter one can see a very depth and small 
thermocline while in summer one has in the density sharp discontinuity. 
This is explained by taking into account the potential energy E of 
a two-fluids system (the first of density q and depth h, the second of 
larger density g + Ao and depth d — h). One has 

where b is the total buoyancy. One has, for the rate of change of po-
tential energy E (12) 

Remarking now that one can say that 

(pi Ao = const. = b 

In this case, fixing the rate of input of mechanical energy and 110 
buoyancy flux across the sea surface, the well-mixed layer will discend at 
a constant rate, which is inversely proportional to the total buoyancy b. 
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In tlie second work the theoretical aspects are studied in more 
detail, the horizontal (low of energy is studied 

7s T 7s 

where T' — T — T and w' is the perturbation of. the vertical velocity. 
The buoyancy term w'T' is linked to the level h of the thermocline by 
the empiric position (13). 

(w'T').-» = (T 7M — - T " ) A ( d h 

\ d i . 

where T* is the temperature of the layer directly under li and 

10 x < 0 

This implies that if the buoyancy term arrives at h, then h goes down, 
in the other case it remains at the preceding position. From these 
equations a very complex non-linear equation is obtained. This is 
however solved with some approximations and one obtains (13) 

= h[((S'+ B ) 71 ~(G ~ D + 

A ( t ) d i = (T» — Tu) h 2 - ° + ^ + B ) /i] 

where G is the kinetic energy, S the value of the solar radiation ad-
sorbed in the sea, {} its attenuation factor and B the sum of the terms 
which concern the thermic exchanges at the surface. I t is to be remar-
ed the good agreement with the experimental data; some discrepan-
ces being perhaps due to dissipative or advective effects forgotten 
in the computations. 

A more sophisticated version is due to Denmanu (5). 

3 . T H E F I NE - STRUCT U K K OF THE THERMOCLINE 

The results of the preceding sections can be used to study the 
fine-structure of thermocline. I t has been observed [Woods (3I)] that 
in strongly stratified regions one can see horizontally some stronger 
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discontinuities followed by layers of constant temperature. Now, 
although the horizontal dimension of the discontinuities are of some 
centimeters and of the homogeneous layers of few meters, the horizon-
tal dimensions can be of some miles. 

I t has also to be remarked that the motion in the layers can be 
a three dimensional turbulence, while in the sheets the strong strati-
fication allows a laminar motion only. At the light of the preceding 
models one can try to interpret this structure as a "memory" of pre-
ceding periods of stronger exchange of turbulence between air and 
water. In these periods a remarkable quantity of turbulence Hows 
from air to water; then this turbulence goes deeper and enlarges h, 
as Turner and Krauss described. After one other period of strong 
turbulent exchange, one has a layer under the new thermocline as 
result of the situation. In any case, some researches have analized 
the consequences of this horizontal layers whitout speculating about 
its origin. Submerging a sensor in one point of the oceanic thermo-
cline, the observed spectra of waves are mainly determined by the 
internal motions, that is, waves between the two neighbour layers 
which will be described in next paragraph. 

More in particular, when an internal wave gives periodic oscil-
lations to the system, the measured quantities have a well defined 
motion. Assuming that the temperature gradient is continuous and 
slowly varying, the vertical oscillation f of a fluid element is related 
to a variation of the temperature $ by an approximated linear relation 

In presence of a strong stratification this relation cannot be used. 
In an interesting work Phillips (22) studies the spectrum of density 
fluctuations for a sheet of pure discontinuity near a layer of a con-
stant temperature. Calling Q„(Z) the undisturbed density of the fluid, 
for a oscillation f(i) of an isopicnic surface at the equilibrium, the 
new density is 

Being all these phenomena of periodic type with period T, we can 
expand in Fourier series 

e(t) = Qo [z — C(t)] 

g(t) = Tj cn ei"w» ' with w, 
-oo 
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The c„ coefficients are 

c„ = 

+ r/2 + r j t 

w I i / J)0 

o— / o(t) e~ I dt = — — - / — e - '""'» ' di 
¿n \ ^ ' 2 T m ! M 

~ Tli - TU 

The structure of the density that has been described implies 

if one assumes that the "sensor" crosses the sheet of discontinuity 
(Ao)r at the time tr. 
Then one has 

cn C* = - , ] - 2 r , s (Ag)r (Ag), e-inu>o(tr-t.) 
" 4 7i n2 

Assuming now that the characteristic time 

Xrs tr ts 

is not related to the corresponding amplitude and that it is rather 
larger than T, 

71 Tr ,s > T 
one has 

^ - T ^ - 7 S r M = ( A i ) 2 
4 je- n' 4 7i' n-

where v is the average number of crossing for unit time. Then one 
can say that the variance of the coefficients of the Fourier transform 
goes asymptotically as v 2 . A more general result can be obtained if 
one assumes 

t r = (Ae)r / (t - tr) of 

where / is a smoothed delta function. 

4. INTERNAL WAVES 

Let us now describe the periodic motion of the above described 
horizontal layers. Let us consider the theory of a fluid of density g, 
local velocity v = (u, v, w) and pressure y (x, y, z, t). Calling g the 
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gravity, 11 the Coriolis parameter and F the other external forces, 
the equation of motion are 

dv 

e — + q ft x v + V p — eé = F 

The equation of continuity and the state equation give 

+ Q d i v v = 0 ; Q = Q ( P , T ) 

d One can express —— as 
Cl6 

d 3 
— = — + v . V 
di Dt 

In order to obtain some treatable relations one has to introduce some 
approximations. The vertical motions being small one can say 

Dp m 
—ffe<o)(g) 

at first order. 
If one now assumes that the fluid is incompressible from the 

continuity equation one has 

do<°> ,. Du Dv Dw 
_> _ o = div v = - + — + 

di Dx Dy Dz 

In this context one is lead to introduce two small quantities 

p = ~p — p<o>; S = Q {x, y, z, t) — g«» (s) 

The equations of motion now give 

dv „ 1 _ S 
— + i J X v + — Vp g = F 
di Q Q 

and from the continuity equation one has 

at Dt Dx Dy Dz 

the difference between 

1 1 8 8 
Vw and V« and between and Q p>°> g» «J) 

the results of the classical Boussinesq a 

being smaller, we obtain 

proximation 
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' ' J + FL X V + ^ - V P - ^ = F 
di g 

V . v = 0 

dp as as as an«» 
- = — - f - u - + V - - + tv - - = 0 
di a t ~dx t>y Tiz 

Tlie quantity b is called specific buoyancy. Approximately one lias (20) 

d t 
— N 2 to; N2 = q —— log ol0> 

J dz 

where AT is the Brunt-Yáisála frequency. I t has a central importance 
in the analysis of these problems; its physical meaning is that of the 
natural frequency of horizontal oscillations for a vertical column of 
water around the equilibrium. Now one can forget the Coriolis forces 
(being the dimensions of these waves rather small) and the non-linear 
terms of the equations of motion. This is due to the rather small ve-
locities considered. Then one arrives to (20) 

F, 
a ii 

+ u 
a u 

— + v 
a® 

a u 
+ w 

a u j ap 
a t + u 

a u 
— + v 
a® * V 

+ w 
a * 

a® 
+ u 

~dV 1 a« 
+ to 

a® , 1 1 
a t 

+ u i ™ 
aí ^ a t 

+ to 
a< a y 

a to aw a to 
— + u — + v —— 

a t a * a y 
to 

a io 
a 2 

i bp 
P < ° > A Z 

— b = F, 

a u 
a * r + 

J)S 
a t 

a® a w 
+ — = o 

t>y a z 

ap<°> 
w —— = o 

as 

With some cross differentiation one then arrives (22) to 

a2 

ay2 

a2 a2 

a t2 \ a * 2 

a2 

a* 2 
to = 0 

This equation is still rather complicated. One then assumes to study 
waves of the type 

to (x, y, z, t) = W(z) e* ~ nt) 

which are the most common in the experimental situations. Then 
one has 

+ ^ A-2 M-„) lc* W(z) 
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Tlie boundary conditions of the equation are 

a . n = 0 n is now the normal to the bottom 

For flat bottom at z = — d this is 

W (z = — d) = 0 

At the free surface z = f (x, y, t) one has 

• ( . = f ) = f 

With the preceding approximation this furnishes 

w 4- q rv = 0 
M2 « = C (x,y,t) 

and this gives for lVT(z) (21) 

g v W = «2 W az 

If moreover we assume a rigid upper surface, then one has also 

W(0) = 0 

These positions give an equations very similar to the well known 
Schroedinger equation. Our internal waves correspond formally to 
the quantum mechanical motion of a particle on a segment. One must 
however remark that this equation is not obtained in the most clear 
way. The approximations will be discussed in the following part 
of this work. In any case, this classical formulation is useful at least 
to introduce a fruitful language. 

We will now describe the most simple case of solutions. I t is, 
from the beginning, clear that where n2 > N2 one has an exponential 
behaviour and where n2 < N2 one as oscillations on 2 (Fig. 2). 

n w 
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Assuming now that N2 is different from zero only in a sharp region s 
at z = T, one has N2 ~ S (z — T). The solutions (20) are exponentials 
in z and there is a dispersion relation for the internal waves: 

n2 = g ft 
A p 
Q (O) 

If now ke < 1 one has 

7 n2 = q k — — 

cotgh A T + ke + cotgh k (d — T) 

cotgh IcT + cotgh (d — T) 
- 1 

and if now one assumes that T « d, which is a reasonable relation, 
then one has 

Ao (ik 
n2 = — 

pi») 1 + cotgh kT 

I t is well known that the thermocline quites the surface motions. 
In fact, calculating the ¡r-component of the velocity v, one has (21) 

u = V(z) e1 (te - "'> 

dz 
V 

I N 2 
(z) - - — » t « j —— — ) 

where a is the amplitude of the motion of the thermocline. Then 
one can see how the surface motions are smoothed from the strong 
stratification. I t is also of interest for deep oceans the case N2 ~ const. 
In this case one has 

W(z) = A eik*z + B e~ik*z 

lc3 = ft 

One can also write this relation as 

i J* 

n 

where v is one horizontal versor. This formula could have been in-
tuitively obtained by the electromagnetic analogy: the Coriolis force 
corresponds to the magnetic field. There are some other explicit po-
tentials which give some explicit dispersion relations. They corres-
pond usually to well-known examples of quantum mechanics. Their 
utility in practical cases decreases by the usual occurrence of cur-
rents, which complicate the equations. 
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5 . T H E SPECTRUM OF THE INTERNAL WAVES 

At the light of the preceding considerations, we now describe 
the study of Garrett and Munk (6'7). They synthesized all known 
measurements about the various internal waves which can be seen 
at the same time. This because the various origins of internal motions 
give in every time and every point of the sea many internal waves. 
I t has to be remarked also that is not very easy for the friction or 
other effects to destroy the internal waves (°'7) so we are rather in 
presence of something like an equilibrium. This is in some sense the 
rather surprising result of these authors. 

The studied measures are of two types, moored and towed. There 
are also correlations at various distances. There are some a-priori 
hypothesis i) observations of different seas and different periods are 
considered; ii) an horizontal hysotropy is assumed in general; iii) the 
internal motions are considered as random compositions of elemen-
tary internal waves; iiii) the turbulence is not considered, although 
it probably influences the problem; however the same formulation 
is very fruitful to describe synthetically the experimental data and 
to suggest new experiments. 

In formulae, the various experimental data can be expressed as 
integrals of the various physical quantities. 

This is correlated to the probability of having an A exp [i (lex —nt)] 
wave and is obtained from the comparison with the experiments. 
I t results 

E (k, v) = 0 . 3 1 0 - 5 
1.5 1 2 Q 1 

= 6 10-5 
1 1 Q 1 

where Q is the Coriolis parameter and 

k* (w* — Q*)1!* 

It has to be stressed again the experimental and empiric character 
of these formulae: the authors have improved various times their 
results from the 1972 version (7). 
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6 . T H E GENERATION OF THE INTERNAL WAVES 

We review now the main sources of internal waves. Among 
various origins, the air-water interaction can give three elementary 
mechanisms (20): 

1) moving pressure field 
2) a strong wind gives a stress field 
3) moving inliomogeneity of buoyancy flux at the sea surface (1S). 

Let us start by studying the effect of a moving pressure field on 
a stratified fluid. For a two-layer fluid there is the above mentioned 
dispersion relation (3). 

_ Ao glc 
~ n V l + cotgh IcT 

the corresponding phase velocity for the internal waves is: 

n | ' g A q 1 

T ~ = | 1 + cotgh kT 
Let us now call 

P = P0 sin (ax — at) 
n a 

the atmosphere nil' moving pressure field. Now, if — < — some trans-

versal internal waves are generated. They are divergent and in some 

sense could be compared with the surface waves left by a ship (14). If 
at the contrary > — , there cannot be waves travelling in the direc-

k a 
tion of the pressure field and then could also exist some waves per-
pendicular to the field. One could remained also some aspects of the 
Cerenkov effect. This happens when a charged particle arrives on a 
medium where the velocity of light is smaller than the velocity of 
the charged particle. 

The last case — = — represents a resonance between internal 
k a 

and external fields: the rate of increase of the internal wave amplitude 
can be computated (15). The result allows an interesting comparison 
with other effects(3). About the effects of the wind stress, one can say 
that waves of frequency larger than the initial waves are mainly due 
to vertical motions which are raised by the winds (27). The rate of 
increase of the amplitude for the internal waves is obviously propor-

4 
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tional to the wind stress and to the phase velocity of the waves ( n ) . 
This type of knowledge appears not very satisfactory. 

Then could also he a strong exchange of heat between air and 
water Let us suppose that the resulting variations of temperature are 

r£ „ ei(kx-Ot) 

This could give some resulting movement of the internal layers (28). 
A numerical comparison of the various rates of growth can show, 
however, that this effect is not as large as that due to the wind stress, 
which is practical results the most important one (26). 

A part from the air-water interactions, one can extract some 
other elementary sources. There could be some instability of some 
shear. We will not discuss it here because it could be in some sense 
considered as a case of turbulence. There is a non-linear exchange 
of energy among waves (2(i). 

There could also be the effect of a submarine mountain on a cur-
rent. This phenomenon could be similar to the "lee waves" gene-
rated on a wind by a mountain (10). Where is a mountain teller than 
the boundary layer, after the mountain one can see in both cases 
some stationary waves, called "lee waves". These could be both 
horizontal with an angle with the horizontal surface (20). By a theo-
retical point of view, one could study the inviscid steady two dimension 
Euler equation for a stream function xp 

A y) = F (ip) = a ip + /; 

This method is due to Long and it has been semplified by Yih (8). 
The general function F is suggested by the theory; the more practical 
linearization is in the common use. One could however criticize the 
effective solidity of these solutions by considering also in general 
the boundary condition (4-24). 

A last aspect of remarkable interest concerns the non-linear 
exchange of energy among waves. This field is not only interesting 
by an experimental point of view but also because it appears useful 
(or perhaps necessary) to introduce modern tools of theoretical ana-
lysis (25). 

The physical effect concerns the non-linear kinematical terms of 
the Euler equation, which is used to describe the elementary waves. 
This happens both for surface and internal waves (17). 

These, important results are that the physical quantity related to 
the Lagrangian is the pressure and not, as one wauld expect, the energy. 
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The starting point has been found theoretically by Phillips (21), 
theoretically because the measures are quite difficult and have been 
done only after this work. Phillips studied systems of n surface waves, 
that are n elementary solutions of the Euler equation linearized. He 
studied in particular the effect of the non-linear kinematical coupling 
among these elementary waves. In the classical case of surface waves 
he shown that for n > 4 the system is not stable because one of the 
waves increases its energy at less of the others. The calculations being 
clear in abstract, they are in practice quite laborious. We will stress 
some most striking aspects of this phenomenon. The key relation is (21) 

n n 
2 la = £ wt = o 

i = l i = l 

where the waves are 
eHktx-WIT) i = 1 , . . .11 

If this relation is satisfeid, then the phenomenon of exchange of energy 
appears. I t can be shown that for the case n = 2, n = 3 for surface waves 
the two relations cannot be satisfied at one time. This is because there 
could be resonance only for n > 4. If there is at the contrary a mixing 
of surface and internal waves, one could also find solutions for n = 3. 
B y an analytical point of view, the equations are a system of n non-
linear equation of evolution. I t has been verified in the following how 
good results the theory gives. Its predictions results (21) reasonably 
good: an interesting experimental application was found in the in-
stability of a pure stokes wave. Its instability being before considered 
of experimental origin, then it turned out to be due to the intrinsic 
instability of the solution of Levi-Civita et al. (21-28). I t is rather curious 
that a longly studied solution like this results at the end non stable! 

One can generalize on theoretical ground the preceding results 
in two ways. Either one introduces following Luke (17) and Whitham(30) 
a variational formulation or one studies a system of infinite gaussian 
waves in the quantum field formalism following Hasselmann (9). In 
the variational formulation, use is done of a Lagrangian due to Luke (17) 

= Yt * ( V ^ ) 2 + 9Z 

for the equation of motion and the boundary conditions relative to 
the wave motion. I t is obvious that a Lagrangian allows variational 
calculations which are much easier. A rather surprising feature of 
these important results is that the physical quantity related to the 
Lagrangian is the pressure and not, as one would expect, the energy. 
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Some application of the method to a Stoke wave shows the strength 
of the method (30). For the internal waves such technique is non com-
plex: one has to introduce a Clebsh transformation (1G) 

v (x, t) = V</> (x, t) + X (x, t) Vfx (x, t) 

where the potentials are now <j>, A and :u. This gives a major com-
plexity of the treatment. 

Some general problems can be solved by using in general these 
improvements of the theoretical technique. I t appears interesting 
the use of the two-time method. This consists in remarking that the 
phenomenon has two important scale length. One concerns the wave 
lengths. The other concerns the time of variation of the amplitude 
frequency and wave length for a wave train. With a rather complex 
mathematical treatment these two times are decoupled and the slower 
one can be analyzed. The resulting equations are series expansions. 
The first term seems reasonable but it is not very clear the general 
validity of these results. This happens in particular for the very in-
teresting discussion of Wliitham for the difference between phase and 
group velocities. Interested to an other physical situation, a realistic 
case of an infinity of waves with Gaussian distribution, Hasselmann 
has done a perturbative calculation till the 5th order. He obtains 
a relation that can be generalized to an equation. This results a non-
linear integral equation in the wave number k and differential in the 
time t. The calculations being rather heavy, the generalizations have 
not been very numerous (9). 

For surface wave Hasselmann not only finds the above described 
equation, but he has also been able to fix some conserved quantities 

| E(k) dk the energy 

| k E(k) dk the momentum 

| j ' | dk which physical interpretation is more difficult. 

In more general terms Hasselmann has generalized his results to every 
kind of waves, by using the very natural formalism of the quantum 

E field theory. In this context it's natural to call n like a number 
w 

of excitations or waves. Then the last relation could have the me-
aning of a conservation of number of waves. The relation of the work 
of Hasselmann (9) with the Luke (17) formalism is not very easy. 
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